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Abstract The method of increments has been invaluable
for electronic structure calculations of solids based in
wavefunctions, i.e., quantum chemical techniques.
While it is well documented for ground-state calcu-
lations we want to give here a coherent description
when it is applied to the computation of excitations of
weakly and strongly correlated electron systems. Pre-
vious applications can be viewed as special cases of the
general scheme.
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1 Introduction

Electronic structure calculations is an important branch
of condensed matter physics. This holds particularly
true for the determination of energy bands of periodic
solids. Presently they are usually calculated by various
approximations to density functional theory. Although
that theory is strictly speaking one for the ground state
of a system it has been also successfully applied to
excitations. But one should be well aware of the fact
that as regards energy bands the approximations are
uncontrolled and therefore can fail badly, e.g., when
electron correlations are strong. In the latter case one
would also like to be able to calculate satellite struc-
tures. From that point of view it is desirable to find
alternative ways of computing energy bands of solids.
In the following we want to discuss some of them. They
are based on a quasiparticle description when electron
correlations are weak and on a Green’s function or pro-
jection operator approach when they are strong. In both
cases intersite correlation contributions to the energy
bands require special attention. In order to deal with
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them we find it mandatory to use an incremental com-
putational scheme of the form suggested and tested by
Stoll [1, 2]. It resembles the Bethe–Goldstone method in
nuclear physics [3]. Without using the method of incre-
ments it is extremely hard to compute energy bands of
semiconductors and insulators with reasonable accu-
racy. The computational effort is simply too large. The
aim of this communication is primarily not to present
new results but rather to consider various approaches
to energy band structures from a unifying point of view
with a focus on Stoll’s method of increments.

2 Special representation

We start from a Hamiltonian of the form

H =
∑

ijσ

tij a
+
iσ ajσ + 1

2

∑

ijkl

σσ ′

Vijkla
+
iσ a

+
kσ ′alσ ′ajσ . (1)

The index i of the creation and annihilation operators
a+
iσ , aiσ is a compact one consisting of a cell index I

and an intracell index n, i.e., i = {I, n}. The a opera-
tors fulfill the anticommutation relations
[
a+
iσ , ajσ ′

]
+ = S−1

ij δσσ ′ (2)

where Sij is the overlap matrix of the basis functions
fi(r) and fj (r). We shall use the Fourier transform

a+
nσ (k) = 1√

N0

∑

I

a+
nσ (I ) e−ikRI (3)

where RI is the lattice vector of cell I and N0 is the
number of unit cells. When we divide H into H =
HSCF +Hres, whereHSCF is the self-consistent field part
of H , the eigenstates of HSCF are Bloch waves which
can be expressed in terms of the a+

nσ (I ) as

c+νσ (k) = 1√
N0

∑

nI

ανn (k) a+
nσ (I ) e−ikRI . (4)

The matrix elements ανn(k) define a structure matrix.
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Next we consider a set of operators {Aν(k)} which
refer to microscopic processes describing correlations
and which will be specified later. One of them will be
c+νσ (k). Associated with the Aν(k) via a Fourier trans-
formation (3) are operators Ai where again i = {I, n}.
We define a retarded Green’s function through

Gµν (k, z) =
(
Aµ (k)

∣∣∣∣
1

z− L
Aν (k)

)
; (5)

where z has a positive infinitesimal imaginary part, i.e.,
z = ω + iδ. The bilinear form (A|B) is defined by

(A | B) =
〈
ψ0

∣∣∣
[
A+, B

]
+

∣∣∣ψ0

〉
(6)

with |ψ0〉 denoting the exact ground state of the elec-
tronic system under investigation. The quantity L in
Eq. (5) is the Liouvillean, a superoperator which acts
on operators A, according to

LA = [H,A]− . (7)

The imaginary part of Gµν(k, z) is directly related
to the corresponding spectral function Sµν(k, ω) by the
relation

Sµν (k, ω) = − 1

π
lim
δ→0+

ImGµν (k, ω + iδ) . (8)

The computation of spectral densities is a major goal
of solid-state theory. There are two different ways of
achieving it, which depend on the importance of elec-
tron correlations. When the correlations are relatively
weak like in conventional semiconductors one identifies
with the set {Aν(k)} simply the c+νσ (k). From Eqs. (6)
and (7) it follows that in this case Eq. (5) is a diagonal
matrix with

Gν (k, z) =
〈
ψ0

∣∣∣∣cνσ (k)
1

z−H + EN0
c+νσ (k)

+c+νσ (k)
1

z+H − EN0
cνσ (k)

∣∣∣∣ψ0

〉
. (9)

In the quasiparticle approximation only the second
term is taken where ν is referring to a valence band,
while only the first term is used when it is a conduc-
tion band index. When the electronic correlations are
strong one has to proceed differently. In that case the
most important microscopic processes must be identi-
fied which form the correlation hole around an electron.
The corresponding operators define the set {Aν(k)}. By
limiting oneself to the operator space spanned by the
Aν(k) one can diagonalize the matrix Gµν(k, z) for
each k point and compute the spectral densities accord-
ingly. In both cases, i.e., for small and large correlation
energy contributions the method of increments reduces
the amount of computations decisively.

3 Quasiparticle approximation

In the quasiparticle approximation the life time of the
excitations is neglected. This gives rise to well-defined

energy bands. Satellite structures do not appear. Con-
sider the valence bands of a conventional semiconduc-
tor such as silicon. In evaluating

Rν (k, z)=
〈
ψ0

∣∣∣∣c
+
νσ (k)

1

z+H − EN0
cνσ (k)

∣∣∣∣ψ0

〉

(10)

one may insert a complete set of intermediate states
of which only the states

∣∣ψN−1
νσ (k)

〉
are kept, which de-

velop out of the SCF (N − 1) electron states∣∣�N−1
νσ (k)

〉 = cνσ (k)|�SCF〉. States corresponding to
one particle–two holes, two particle–three holes etc.
SCF states are neglected. This results in

Rν (k, z) =
∣∣〈ψN−1

νσ (k) |cνσ (k)|ψ0
〉∣∣2

z+ EN−1
ν (k)− EN0

(11)

where EN−1
ν (k) is the energy of |ψN−1

νσ (k)〉.
Thus the excitation energy is given by

εν (k) = 〈
ψN−1
νσ (k) |H |ψN−1

νσ (k)
〉− EN0

= εSCF
ν (k)+ εcorr

ν (k) . (12)

We have decomposed it into an SCF and a correlation
contribution. In the same way as we have related c+νσ (k)
to the a+

nσ (I ) through Eq. (4) we can relate
∣∣ψN−1

νσ (k)
〉

to
∣∣∣ψ̃N−1

nσ (I )
〉

by the complex conjugate of the same

equation where
∣∣∣ψ̃N−1

nσ (I )
〉

= 
̃an(I )
∣∣�N

SCF

〉
and 
̃ is

a wave operator. It transforms the uncorrelated SCF
state with one missing electron in orbital fnI (r), i.e.,

an(I )
∣∣�N

SCF

〉
into

∣∣∣ψ̃N−1
nσ (I )

〉
. Thus we obtain

εν (k) =
∑

nm

∑

I

ανn (k) α∗
νm

×eikRI

〈
ψ̃N−1
mσ (0) |H | ψ̃N−1

nσ (I )
〉
− EN0 .

(13)

Since the SCF part εSCF
ν (k) of εν(k) can be calculated,

e.g., by using the CRYSTAL [4] or Wannier [5, 6] pro-
gram package, we concentrate here on εcorr

ν (k). In [7] it
was shown that the correlation energy contribution can
be written in the form

εcorr
ν (k) =

∑

nm

∑

I

ανn (k) α∗
νm (k) eikRI

× 〈
�N

SCF

∣∣a+
mσ (0)HresSanσ (I )

∣∣�N
SCF

〉
c
;

ν = 1, . . . , 4 (14)

where S = 
̃−1 is the scattering operator and the sub-
script c indicates that the cumulant of that expectation
value must be taken. Strictly speaking S relates to
−1
where in distinction to 
̃ the operator
 is defined only
in connection with cumulants (for more details see [7]).
For a closely related description in terms of an effective
Hamiltonian by Albrecht et al. see [8, 9, 10].
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The cumulant scattering operator S does two things.
It generates a relaxation- and polarization cloud around
the hole created by anσ (I ) and it accounts for the loss of
ground-state correlations. These are correlations which
are present in the N electron ground state but absent in
the N − 1 particle system due to the missing electron.

There are two ways by which one may evaluate
εcorr
ν (k) given by Eq. (14) and similarly when ν =

5, . . . , 8, i.e., for the conduction bands. One is a simpli-
fied computational scheme which has been discussed in
[11]. The relaxation-and polarization cloud is thereby
determined by a new SCF calculation with the hole gen-
erated by anσ (I ) kept fixed at the center of a cluster.
By calculating the matrix elements of H with respect
to nonorthogonal SCF states one obtains one part of
εcorr
ν (k), i.e., the one from relaxation-and the polariza-

tion cloud. The loss of ground-state correlations due to
the hole is computed by identifying all those correla-
tion contributions to |ψ0〉 which involve the annihilated
electron.

The second way is based on the method of incre-
ments and has been applied, e.g., in [12]. We formulate
here the main idea in a form which is also applicable
to strongly correlated electrons. For that purpose we
decompose the residual interactions into

Hres =
∑

I

HI +
∑

〈IJ 〉
HIJ +

∑

〈IJK〉
HIJK

+
∑

〈IJKL〉
HIJKL . (15)

The different parts refer to the unit cells I, J, . . . to
which the a+

nσ (I ), amσ ′(J ) etc. operators inHres belong.
For example, in HI the two creation and two annihila-
tion operators in Hres refer all to unit cell I , while in
HIJ they involve cells I and J etc. In fact, in order
to calculate the effect of Hres with the help of stan-
dard quantum chemical program packages one has to
reformulate Hres slightly so that the annihilation oper-
ators refer to orthogonal states. But this has been dis-
cussed, e.g., in [13] and need not to concern us here.
The scattering operator S can then be decomposed into
increments according to

S =
∑

I

SI +
∑

〈IJ 〉
(SIJ − SI − SJ )+ · · · (16)

where 〈IJ 〉 denotes pairs and the next terms include
triples, quadruples etc. SI is the scattering operator of a
HamiltonianHSCF +HI and SIJ is the one of a Hamil-
tonianHSCF +HI +HJ +HIJ . This way the N electron
scattering problem is broken up into scattering prob-
lems of a few electrons which can be handled without
problems. The method turns out to be rapidly conver-
gent, i.e., three-site scattering processes SIJK play little
role in weakly correlated semiconductors like the ele-
mental ones. Details are found, e.g., in [13].

4 Strongly correlated electrons

When electron correlations are not weak, satellite struc-
tures may have a strong influence on the spectral den-
sity. Therefore the microscopic processes which lead to
satellites have to be treated sufficiently accurate [14].
This is done by including them in the set {Aν(k)} or their
Fourier transform {Aν(I)}, respectively. We transform

Gµν (k, z)= 1

N0

∑

I

e−ikRI

(
Aµ (0)

∣∣∣∣
1

z− L
Aν (I)

)

(17)

and determine the matrix element as follows.We decom-
poseL = LSCF+Lres whereLSCF andLres refer toHSCF
and Hres, respectively (see (7)). Then

1

z− L
= G0 +G0TG0 (18)

with G0 = (z− LSCF)
−1 and a T matrix given by

T = Lres
1

1 −G0Lres
. (19)

Note that T is a superoperator, i.e., it acts on operators
and not on states. Next we decompose Lres into

Lres =
∑

I

LI +
∑

〈IJ 〉
LIJ + · · ·

=
∑

α

Lα, where α = I, IJ, . . . (20)

where LI , . . . , LIJKL are the Liouvilleans associated
with HI , . . . , HIJKL, respectively. In close analogy to
Eq. (16) we find

T =
∑

I

TI +
∑

〈IJ 〉
(TIJ − TI − TJ )+ · · ·

=
∑

I

TI +
∑

〈IJ 〉
δTIJ + · · · (21)

where TI is the T matrix superoperator to a Hamil-
tonian Heff(I ) = HSCF + HI and TIJ is the one to
Heff(I, J ) = HSCF +HI +HJ +HIJ etc.

The cluster T matrices TI , TIJ etc. are expressed in
terms of the cluster Liouvilleans Lα as

TI = LI
1

1 −G0LI
,

TIJ = LIJ
1

1 −G0 (LI + LJ + LIJ )
(22)

etc. This enables us to write

Gµν (I, z) =
(
Aµ (0)

∣∣∣∣
1

z− L
Aν (I)

)

=
(
Aµ (0)

∣∣∣∣∣G0

(
1 +

∑

L

TL+

∑

〈LJ 〉
δTLJ + · · ·



G0Aν (I)



 (23)
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and to compute the Gµν(I, z) in an incremental way.
At each step one must diagonalize the matrixGµν(I, z)
and by inserting the result into Eq. (17) one obtains the
functionsGn(k, z) from which the spectral density can
be computed (see (9)). Each n gives rise to a dispersion
ω(k).

The same procedure can be applied when the mem-
ory matrix Mµν(k, z) is considered instead of Green’s
function. In that case one starts out from

Gν (k, z) =
(
c+νσ (k)

∣∣∣∣
1

z− L
c+νσ (k)

)
(24)

and rewrites it in the form [15, 16]

Gν (k, z) = 1

z−
ν (k)−Mν (k, ω)
. (25)

Here the frequency matrix is
ν(k) = (c+νσ (k)|Lc+νσ (k))
and the memory function Mν = (k, z) is given by

Mν (k, z) =
(
c+νσ (k)

∣∣∣∣LQ
1

z−QLQ
Lc+νσ (k)

)
.

(26)

The latter has again the form of Eq. (24) but with
c+νσ (k) replaced by Lc+νσ (k) and L replaced by QLQ
where the projectorQ projects onto a space perpendic-
ular to c+νσ (k), i.e., Qc+νσ (k) = 0 and Q2 = Q. Since
QLc+νσ (k) may generate a number of operators Aν we
are back to the problem of determining Eq. (5). Based on
Eq. (25) the incremental method has been applied in or-
der to study the Hubbard model on a square lattice near
half filling [17]. This calculation was combined with the
coherent potential approximation (CPA) by embedding
the cluster memory functions into a medium. The latter
is self-consistently determined from a CPA condition.
As a result a marginal Fermi liquid like behavior was

found for a range of hole doping and size of the Hub-
bard parameter U . Without the method of increments a
calculation of that type would not be feasible.
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